Floer homology of algebraically finite mapping classes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braid classes and their Floer homology

Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian systems on S1×D2. In this 3-dimensional setting we can think of flow-lines of the Hamilton equations as closed braids in the solid torus S1×D2. In the spirit of positive braid classes and flat-knot types as used in [17] and [2] we define braid classes and use Floer’s variational approach [...

متن کامل

Heegaard Floer Homology of Mapping Tori Ii

We extend the techniques in a previous paper to calculate the Heegaard Floer homology groups HF(M, s) for fibered 3-manifolds M whose monodromy is a power of a Dehn twist about a genus-1 separating circle on a surface of genus g ≥ 2, where s is a non-torsion spinc structure on M .

متن کامل

Heegaard Floer Homology of Certain Mapping Tori

We calculate the Heegaard Floer homologies HF(M, s) for mapping tori M associated to certain surface diffeomorphisms, where s is any Spin structure on M whose first Chern class is non-torsion. Let γ and δ be a pair of geometrically dual nonseparating curves on a genus g Riemann surface Σg, and let σ be a curve separating Σg into components of genus 1 and g − 1. Write tγ , tδ, and tσ for the rig...

متن کامل

Floer Homology, Relative Braid Classes, and Low Dimensional Dynamics

Floer homology is a powerful variational technique used in Symplectic Geometry to derive a Morse type theory for the Hamiltonian action functional. In two and three dimensional dynamics the topological structures of braids and links can used to distinguish between various types of periodic orbits. Various classes of braids are introduced and Floer type invariants are defined. The definition and...

متن کامل

Symplectic Floer Homology and the Mapping Class Group

We consider symplectic Floer homology in the lowest nontrivial dimension, that is to say, for area-preserving diffeomorphisms of surfaces. Particular attention is paid to the quantum cap product.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symplectic Geometry

سال: 2001

ISSN: 1527-5256,1540-2347

DOI: 10.4310/jsg.2001.v1.n4.a4